- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
The normal at $\left( {2,\frac{3}{2}} \right)$ to the ellipse, $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{3} = 1$ touches a parabola, whose equation is
A
$y^2 = -104 x$
B
$y^2 = 14x$
C
$y^2 = 26x$
D
$y^2 = -14x$
(AIEEE-2012)
Solution
Ellipsa is $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{3} = 1$
Now, equation of normal at $(2,3/2)$ is
$\frac{{16x}}{2} – \frac{{3y}}{{3/2}} = 16 – 3$
$ \Rightarrow 8x – 2y = 13$
$ \Rightarrow y = 4x – \frac{{13}}{2}$
Let $y = 4x – \frac{{13}}{2}$touches a parabola
${y^2} = 4ax$
We konw, a straight line $y=mx+c$ touches
a parabola ${y^2} = 4ax$ if $a-mc=0$
$\therefore a – \left( 4 \right)\left( { – \frac{{13}}{2}} \right) = 0 \Rightarrow a = – 26$
Hence, required equation of parabola is
${y^2} = 4\left( { – 26} \right)x = – 104x$
Standard 11
Mathematics